LUX ARRHYTHMO Encodes a Nighttime Repressor of Circadian Gene Expression in the Arabidopsis Core Clock
نویسندگان
چکیده
Circadian clocks provide an adaptive advantage by allowing organisms to anticipate daily and seasonal environmental changes [1, 2]. Eukaryotic oscillators rely on complex hierarchical networks composed of transcriptional and posttranslational regulatory circuits [3]. In Arabidopsis, current representations of the circadian clock consist of three or four interlocked transcriptional feedback loops [3, 4]. Although molecular components contributing to different domains of these circuits have been described, how the loops are connected at the molecular level is not fully understood. Genetic screens previously identified LUX ARRHYTHMO (LUX) [5], also known as PHYTOCLOCK1 (PCL1) [6], an evening-expressed putative transcription factor essential for circadian rhythmicity. We determined the in vitro DNA-binding specificity for LUX by using universal protein binding microarrays; we then demonstrated that LUX directly regulates the expression of PSEUDO RESPONSE REGULATOR9 (PRR9), a major component of the morning transcriptional feedback circuit, through association with the newly discovered DNA binding site. We also show that LUX binds to its own promoter, defining a new negative autoregulatory feedback loop within the core clock. These novel connections between the archetypal loops of the Arabidopsis clock represent a significant advance toward defining the molecular dynamics underlying the circadian network in plants and provide the first mechanistic insight into the molecular function of the previously orphan clock factor LUX.
منابع مشابه
LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms.
In higher plants, the circadian clock orchestrates fundamental processes such as light signaling and the transition to flowering. We isolated mutants of the circadian clock from an Arabidopsis thaliana mutagenized reporter line by screening for seedlings with long hypocotyl phenotypes and subsequently assaying for abnormal clock-regulated CAB2::LUC expression. This screen identified five mutant...
متن کاملThe LNK1 night light-inducible and clock-regulated gene is induced also in response to warm-night through the circadian clock nighttime repressor in Arabidopsis thaliana
Ambient temperature has two fundamental impacts on the Arabidopsis circadian clock system in the processes referred to as temperature compensation and entrainment, respectively. These temperature-related longstanding problems have not yet been fully clarified. Recently, we provided evidence that temperature signals feed into the clock transcriptional circuitry through the evening complex (EC) n...
متن کاملThe Pea Photoperiod Response Gene STERILE NODES Is an Ortholog of LUX ARRHYTHMO.
The STERILE NODES (SN) locus in pea (Pisum sativum) was one of the first photoperiod response genes to be described and provided early evidence for the genetic control of long-distance signaling in flowering-time regulation. Lines homozygous for recessive sn mutations are early flowering and photoperiod insensitive, with an increased ability to promote flowering across a graft union in short-da...
متن کاملEARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock.
The plant circadian clock is proposed to be a network of several interconnected feedback loops, and loss of any component leads to changes in oscillator speed. We previously reported that Arabidopsis thaliana EARLY FLOWERING4 (ELF4) is required to sustain this oscillator and that the elf4 mutant is arrhythmic. This phenotype is shared with both elf3 and lux. Here, we show that overexpression of...
متن کاملInsight into a Physiological Role for the EC Night-Time Repressor in the Arabidopsis Circadian Clock.
Life cycle adaptation to seasonal variation in photoperiod and temperature is a major determinant of ecological success of widespread domestication of Arabidopsis thaliana. The circadian clock plays a role in the underlying mechanism for adaptation. Nevertheless, the mechanism by which the circadian clock tracks seasonal changes in photoperiod and temperature is a longstanding subject of resear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 21 شماره
صفحات -
تاریخ انتشار 2011